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ABSTRACT 
In this paper, we propose two criteria for the design 
of (minimum-phase) linear prediction error (LPE) fil- 
ters with a set of non-Gaussian measurements ~ ( n ) .  
The first one requires a slice of Mth-order (M 2 3) 
cumulants of ~ ( n )  and the other requires a slice of 
third-order cumulants of the prediction error of ~(n). 
We theoretically show that when ~ ( n )  is contaminated 
by additive Gaussian noise, the designed LPE filters 
based on the proposed criteria are identical to the 
conventional correlation-based LPE filter associated 
with the case that z(n) is noise-free. Moreover, as the 
conventional LPE filter, coefficients of the cumulant- 
based LPE filter associated with the first criterion can 
be obtained by solving a set of symmetric Toeplitz 
linear equations. Finally, some simulation results are 
provided to support the analytical results. 

1. INTRODUCTION 

Linear prediction error (LPE) filters [l-41 have been 
widely used in various signal processing areas such as 
speech processing, seismic deconvolution and spectral 
estimation. Coefficients of conventional correlation- 
based LPE filters can be obtained by solving a set of 
symmetric Toeplitz linear equations (the well-known 
Yule-Walker equations) formed of correlations rZZ ( I C )  
of the stationary signal z(n) of interest. Therefore, it 
is sensitive to measurement noise because rso(IC) in- 
cludes correlations of noise. Recently, Chi et al. [5-71 
proposed some higher-order statistics (HOS) (known 
as cumulants) based criteria for the design of LPE fil- 
ters when ~ ( n )  is non-Gaussian. The designed HOS 
based LPE filters are inherently immune from additive 
Gaussian noise because all higher-order (3  3) cumu- 
lants of Gaussian processes are totally zero. In this 
paper, we further propose two new criteria using a 
single slice of higher-order cumulants. As the criteria 
reported in [5-71, one of the proposed criteria resorts to 

numerical optimization for obtaining the desired LPE 
filter, whereas coefficients of the desired LPE filter as- 
sociated with the other criterion can be obtained by 
solving a set of symmetric Toeplitz linear equations. 
Some simulation results are provided to support the 
proposed criteria. Finally, we draw some conclusions. 

2. NEW HOS BASED CRITERIA FOR THE 
DESIGN OF LPE FILTERS 

Assume that ~ ( n ) ,  n = 0, 1, ..., N-1 are the given real 
stationary non-Gaussian noisy measurements based on 
the following convolution model 

.(n) = y(n) + w(n) = U(.) * h(n) + w(n)  (1) 

where y(n) = U(.) * h(n) (noise-free measurements), 
U(.) is a real, zero-mean, independent identically dis- 
tributed (i.i.d) non-Gaussian process with variance c: 
and Mth-order cumulant YM ( M  2 3), w(n)  is zero- 
mean Gaussian noise and h(n) is the impulse response 
of a linear time-invariant (LTI) causal stable system. 
For ease of later use, let C ~ m ( ~ ) ( z l ,  22,. . . , ZM) de- 
note the Mth-order cumulant of random variables (21, 
22,. . . ,zM), C M , ~ ( ~ I ,  k2, . . . , k ~ )  denote the Mth- 
order cumulant function of ~ ( n ) ,  c ~ , ~ ( k l ,  kz, . . . , I C M )  
denote the Mth-order biased sample cumulant func- 
tion of ~ ( n )  and 

m 

FM = h M ( n ) .  (2) 
n=-m 

Let vp(n) be a pth-order causal FIR filter with 
vp(0) = 1 and input ~ ( r a ) .  Then the output e(n) (pre- 
diction error of ~ ( n ) )  of the filter is given by 

P 
e(.) = ~ ( n )  * wp(n) = z(n) + vp( i ) z (n  - i). (3) 

i = l  
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The conventionalpth-order LPE filter is the vp(n) such 
that the mean square error E[e2(n)]  is minimum. The 
new HOS based criteria for the design of LPE filters 
are described in Theorem 1 as follows: 

Theorem 1. Let Gp(n) be the optimum up(.) based 
on any of the following two criteria 

J ~ ( v ~ ( n ) )  = C ~ m ( ~ ) ( z ( n ) ,  . . . ,z(n), e(n + k) 
{ k I -  

,e(n + k)) 2 JM(GpijP(4),  M 2 3 (5) r 
where V , ( z )  is the z-transform of up(.). Then the 
Gp(n) associated with and the one associated with 
J M  are identical to the conventional pth-order LPE 
filter associated with y(n) (noise-free measurements), 
as long as 7 3 F 1  # 0 for the former and ~ M F M - ~  # 0 
for the latter. 

Proof Let 

t(.) = y(n) * .p(.) = 4.1 * s (n )  

s(n) = h(n) * .P(.). 
where 

Let us simplify the numerator of 7 as follows: 
00 

k = - w  k = - w  

00 f w  

7 3  = -E[<2(n)]H(z = l)V,(z = 1) 4 
Substituting (8) into Tgiven by (4) yields 

Moreover, JM can be simplified as follows 

k = - m  n=-m I’ 

One can see, from (9) and (ll), that minimizing ? 
and JM are equivalent to minimizing E [ t 2 ( n ) ]  when 
7 3 F l  # 0 for the former and ~ M F M - ~  # 0 for the lat- 
ter. Thus we have completed the proof. 

Moreover, Theorem 1 also implies the following fact. 
(Fl)  Assume that H ( z )  and H ~ p ( z )  are spectrally 

equivalent and H ~ p ( z )  is minimum-phase with 
H ~ p ( z  = m) = 1. The optimum Gp(n) (associ- 
ated with either T o r  J M )  + Gp’(n) as p + 00 

where Gp’(n) is the impulse response of the in- 
verse filter l / H ~ p ( z ) .  Furthermore, e(n) can be 
viewed as the noisy output of an allpass system 
H ( z ) / H ~ p ( z )  (a phase distortion system) driven 
by the input U(.). 

Next, we present how to obtain the optimum LPE 
filters based on the proposed criteria. First of all, con- 
sider the criterion given by (4) which is obviously 
a highly nonlinear function of the filter coefficients. 
Gradient type numerical algorithms can be used to 
search for the desired Gp(n) by minimizing 

I {E:=-, 8 3 , e ( 0 , k ) } 2  
J =  (12) 

IVP(Z = 1)12 

where the integer K must be chosen large enough such 
K -  that x k = - K  C3,e (0, I C )  cF=-m & , e ( 0 ,  k). 

It can be easily shown that the other criterion JM 
given by (5) can be expressed as 

J M  = { 9 6 vp(i)vp(j)c(j  - i) 
i = O  j=O 

where 

L ‘U J 
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Setting the partial derivative of JM with respect to 
vp(i), i = 1 , 2 , .  . . , p  equal to zero, one can obtain the 
following linear equations 

P 

c G p ( j ) c ( j  - i )  = 0, i = 1 , 2 , .  . . , p  
j =O 

(15) 

which can be rewritten in a matrix equation as 

C G = - c  (16) 

where 2 = (Gp(l),Gp(2), . . . ,Gp(p))T is a p x 1 vector, 
C i s  apxpsymmetric Toeplitz matrix with the ( i , j ) th  
component given by 

Ci,j = ~ ( i  - j ) ,  1 5 i 5 p ,  1 5 j 5 p (17) 
and c is a p x 1 vector given by 

c = ( c ( l ) ,  c(2) ,  * * .  ,C(P))T. (18) 

Furthermore, it can be shown that the discrete-time 
Fourier transform C ( f )  of c ( i )  is given by 

c(f) = lH(f)12YMFM-2 (19) 

where H ( f )  = H ( z  = ezp(j2nf)). The following fact 
can be easily inferred from (19). 
(F2) The sequence c ( i )  = c( - i )  is positive definite if 

~ M F M - ~  > 0, and negative definite if ~ M F M - : !  < 
0. The desired Gp(n) obtained by solving (16) is 
minimum-phase. 

The well-known computationally efficient Levison- 
Durbin recursive algorithm [1,2] can be used to solve 
(16) for 2. It is summarized as follows: 
For 1 = 1. 

For 2 5 15 p ,  

Note, from (ll), that (pl(M)I = JZ2(Gl(n))  <_ J z 2 (  
v1-1(n))  = Ipi- l (M)l .  This fact and (24) imply that 
I v J ( ~ ) (  < 1. In practice, c ( i )  must be estimated from 
data. For instance, c(i) can be estimated as 

h 

K 
E(i) = EM,=(O ,..., O , k , k + i )  (25) 

k=-K 

where the integer K must be chosen barge enough such 
that C(i)  is approximate to Er=-=-, CM,+(O,. . . ,0, k,k 
+i). 

3. SIMULATION RESULTS 

In this section, we provide two simulation examples to 
demonstrate that the proposed criteria can be used for 
the design of LPE filters. The first example includes 
some performance tests to the proposed criteria, while 
the second example is to employ the designed LPE fil- 
ter associated with 5 4  to deconvolve synthetic seismic 
data. 

Example 1: 
The driving input U(.) used was a zero-mean, Ex- 

ponentially distributed i.i.d. random sequence with 
variance U: = 1 and 73 = 2.  A second-order autore- 
gressive (AR) model H ( t )  = l/A(z) with 

A(z) = 1 + a(1)z - l  + Q(2)%-2 = 1 + 0.72-l + O . ~ Z - ~  

was used and ~ ( n )  was white Gaussian. The order of 
the LPE filters to be designed was p = 2. The initial 
conditions vo = [0, 0IT were used to initialize the pre- 
vious iterative algorithm associated with y given by 
(12)  with K = 10. The desired LPE filter associated 
with J3 was obtained by solving (16) in which c ( i )  was 
replaced by E(i) given by (25) with K = 5. Note that 
F1 = H ( z  = 1) = 1/1.8 # 0 (see (2)) for this case (see 
Theorem 1). For comparison with these HOS based 
LPE filters, conventional LPE filters were obtained by 
Burg’s algorithm [1,2]. 

The simulation results are shown in Tables 1 throu- 
gh 3. Observe, from these tables, that when SNR is 
large (SNR=m), mean values of all estimated filter 
coefficients are very close to the true AR parameters. 
When SNR is low (SNR=5), biases of estimated filter 
coefficients shown in Tables 2 and 3 are much smaller 
than those shown in Table 1, and mean square errors 
(sum of variance and square of bias) of estimated filter 
coefficients shown in the former are also smaller than 
those shown in the latter although standard deviations 
of estimated filter coefficients shown in the latter are 
smaller than those shown in the former. Therefore, 
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these simulation results indicate that coefficients of 
the designed HOS based LPE filters by the proposed 
criteria approximate the true AR parameters well for 
this case. 

Example 2: 
The driving input U(.) used was a zero-mean Ber- 

noulli-Gaussian sequence (a sparse spike sequence) wi- 
th skewness y3 = 0 and kurtosis 74 = 0.27. A third- 
order nonminimum-phase autoregressive moving av- 
erage (ARMA) system taken from [8] with transfer 
function 

1 + 0.1%-1 - 3.2725~-’ + 1 .41125~-~  H ( z )  = 
1 - 1.9z-l + 1.1525~-’ - 0 . 1 6 2 5 ~ - ~  

was used. The synthetic data ~ ( n )  ( N  = 512) shown 
in Fig. l(a) were generated based on (1) for SNR = 
27 dB and w(n) being white Gaussian. We processed 
z(n) by the LPE filter of order p = 40 associated with 
J4 with K = 300 in ?(i) (see (25)) to get the decon- 
volved signal e(n)  (dotted line) shown in Fig. l(b). 
One can see, from Fig. l(b), that each spike in U(.) 
(solid line) is associated with a wavelet in e(n) which 
begins with two opposite peaks and gradually decays 
due to the remaining phase distortion of the system 
H ( z )  (see (Fl)) .  Forty zeros of the LPE filter are 
shown in Fig. l(c). One can see, from this figure, 
that all zeros are inside the unit circle and they scat- 
ter uniformly near the unit circle. These results are 
consistent with the statements described in (F2). The 
signal e(n)  was further processed by Chi-Kung’s all- 
pass system deconvolution filter [8] with order equal 
to 2. The output Z(n) (dotted line) of this filter, along 
with the true input U(.) (solid line), is shown in Fig. 
l(d). Note, from Fig. l(d),  that G(n) approximates 
U(.) well except for a scale factor because the allpass 
system distortion in e(n) has been considerably re- 
moved. These results justify the statements described 
in (F l ) .  
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4. CONCLUSIONS 

We have presented two new HOS based criteria 7 and 
JM given by (4) and (5), respectively, for the design 
of LPE filters. The designed HOS based LPE fil- 
ters with measurements corrupted by additive Gaus- 
sian noise are identical to the conventional (minimum- 
phase) LPE filter associated with the case that mea- 
surements are noise-free (see Theorem l) .  Coefficients 
of the LPE filter based on J M  can be solved by the 
computationally efficient Levision-Durbin algorithm b- 
ut those based on J must resort to  a numerical opti- 
mization algorithm. Finally, some simulation results 

~~ 

0.5975 f 0.0178 0.0312 f 0.0178 
0.5262 f 0.0179 -0.0093 f 0.0181 

were provided to justify that the proposed HOS based 
criteria can be used for the design of LPE filters. 
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Table 1. Simulation results for the conventional LPE 
filter obtained by Burg’s algorithm 

a(1) = 0.7, a(2) = 0.1, N = 4096, 30 independent runs 

0.7023 f 0.0168 
0.6713 f 0.0173 

0.1009 f 0.0164 
0.0793 f 0.0171 
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Table 2. Simulation Fsults associated with the 
criterion J with K = 10. 

I u(1) = 0.7, a(2) = 0.1. N = 4096. 30 indeDendent runs I 

SNR I Gi(1) G(2) 
00 0.7046 & 0.0643 
40 0.7108 f 0.0745 
10 0.7159 f 0.1128 

I 

5 1  0.7292 f 0.1967 I 0.1162 f 0.1825 

0.1010 k'0.0637 
0.1022 f 0.0705 
0.1020 f 0.0973 

-15 I I 

(4 

100 m 300 400 500 

Sample number (n) 

00 

40 
10 
5 

-1.5 
-1.5 -1  -0.5 0 0.5 1 

(4 

0.7031 0.0507 0.1003 k'0.0392 
0.7049 f 0.0615 0.0976 f 0.0494 
0.7046 f 0.0886 0.0937 f 0.0714 
0.7056 f 0.1370 0.0923 f 0.1112 

Table 3. Simulation results associated with the 
criterion 53 with K = 5 in qi). 

-6 t 
"0 100 m 300 400 500 

Sample number (n) 
( b )  

-0 100 m 300 400 500 

Sample number (n) 
(4 

Fig. 1. (a) Synthetic noisy data for N = 512 and SNR = 27 dB, (b) the true input signal U(.) (solid line) and 
the deconvolved signal e(n) (dotted line) obtained by using the 40th-order LPE filter associated with J4, (c) forty 
zeros (circles) of the LPE filter, and (d) the true input signal U(.) (solid line) and the output G(n) (dotted line) 
of Chi-Kung's allpass system deconvolution filter of order equal to 2 with input e(.). 
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